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• Understanding transport is needed for practical Tokamak Reactors

• ITG / TEM turbulence is thought to cause most transport in present
Tokamaks

• The GYRO Gyrokinetic code is thought to contain all the physics
needed to understand ITG / TEM turbulence

• This poster tests the validity of GYRO by comparing simulations of
transport and density fluctuations with measurements
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Outline

• Description of the JT-60U plasma studied

• Transport analysis and GYRO simulations

• Comparisons of simulated and measured transport

– GYRO energy transport high x2.5 or more (depending on ripple
loss)

• Comparisons of simulated and measured ñe radial correlation

– GYRO λr during ITB ' measurement

• Comparisons of simulated and measured ñe/ne

– GYRO rms(ñe/ne) high x(2-3)

• Conclusions
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Description of JT60-U plasma with box-like ITB
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Temperature profiles develop ITB’s

• early: slightly peaked Ti and broad Te

• late: Ti ITB and box-like Te ITB
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Density profiles become peaked

• ne and ni broad early, peaked later
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Reversed qMHD profile

• GYRO simulations in region of strong gradients and reversed qMHD

0.0 0.2 0.4 0.6 0.8 1.0
2

3

4

5

6

7

JT60/98 32844A43

r       / amin

4.9 s

6.0, 6.2

q
MHD GYRO

region

JT-60
PRINCETON PLASMA

PHYSICS LABORATORY

PPPL 6



Low energy transport coefficients in core

• χe drops, χi remains low and near χneoclassical

• Ignored ripple losses that would make χe and χi even lower
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Profiles of energy flow from power-balance

• add conducted and convected energy flow via thermal plasma

• subtract Prad, CX, beam-shine-through (large)

• ignore ripple loss (large?)
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GYRO runs

• calculate time evolution of distribution fun’n of each species in 5D

• 2 ion species: 1) bulk hydrogenic, 2) lumped beam and impurity

• ITG/TEM with kinetic electrons (kθρs < 1.0)

• linear runs to study spectra in kθρs

• nonlinear runs to simulate transport and ñe/ne

• include effects of Er and Kelvin-Helmholtz (v||) instability

• only electrostatic (βe = 0) so far

• massive parallel processing (128-512 processors)
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Example of scan in kθρc from linear run

• Unusual to find TEM at low as well as high kθρs
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Saturation of Zonal Flow and higher ntoroidal modes

• ntoroidal > 0 modes drive turbulence

• Zonal flows (ntoroidal = 0) damp turbulence

• predator-prey interplay
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Example of saturation of energy transport at T = 6.2 s

elec

jt60
_32

844
A42

_2J

T = 6.2 s 0.34 < r     / a < 0.42minEnergy Diffusion

Bulk ion species

Impurity ion species

t [ c   / a ]s

JT-60
PRINCETON PLASMA

PHYSICS LABORATORY

PPPL 12



Species transport also computed
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Corrugations in fluctuations at low-order rational surfaces

• Example at T=4.9s, 0.34 ≤ rmin/a ≤ 0.42
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Cumulative energy diffusivities at T = 4.9 s

• Early: dominate mode near kθρs = 0.08

• Impurity energy flow inward

Bulk ions

Impurity ions

Elec

jt60
_32

844
A41

_7J
 (45

7 <
 t <

 91
5)

T=4.9 s

0.32 < r     / a < 0.44min

k θ ρ s

d   
   / 

d
χ

k θρ s
Spectrum of energy transport

JT-60
PRINCETON PLASMA

PHYSICS LABORATORY

PPPL 15



Cumulative energy diffusivities at T = 6.2 s

• 0.34 ≤ rmin/a ≤ 0.42: dominate mode near kθρs = 0.4
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Energy flow profiles at 6.2 s

• GYRO simulated qi + qe ' 2-9 MW, depends sensitively on ∇(Ti)

• Offset near rmin/a = 0.4 due to turbulence spreading?
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• TRANSP power balance ' 1.2-3.5 MW
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Small radial correlation length for potential fluctuations
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Short ne radial correlation length early, T=4.9s

• GYRO on high-field side: λr ' 0.3 cm, shorter than LFS x2
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• Reflectometry on high-field side, rmin ≤ 10 cm: λr ' 20 cm
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larger ne radial correlation length at late times

• GYRO: λr ' 0.5 cm
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Small root-mean-square (ñe/ne) early, T=4.9s

• GYRO: rms ' (0.5-1.0)%
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Larger root-mean-square (ñe/ne) at late time

• GYRO at late time: rms relatively constant (1.0-1.5)%
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Additional findings not discussed here

• Part of ongoing nonlinear GYRO simulations of DIII-D, JET, TFTR,
and ITER

1. energy, particle, and momentum transport and flows are predicted
2. electron species flow in or out depending on conditions
3. strong sensitivity to drive terms such as ∇(Ti)
4. strong sensitivity to Er

• see 2005 EPS paper on momentum confinement in DIII-D and JET
ELMy H-mode plasmas
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Summary

• Results for JT60-U plasma in steep gradient region:

1. Peak kθρs near 0.08 at early time, 0.4-0.6 later times
2. GYRO simulated energy flow (qi + qe) higher by x2.5 or more than

TRANSP power balance
3. Gyro simulated ne radial λ ' measured reflectometry
4. GYRO simulated rms(ñe/ne) higher x2-3 than reflectometry
5. Being higher on flows consistent with being higher on ñe/ne
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Future Plans

• More work needed

1. Longer runs and alternative grids to test convergence
2. Variations of drive terms to study sensitivity and critical gradients
3. Alter GYRO to input separate vbulk

tor and vimp
tor for increased accu-

racy of angular momentum transport
4. Vary Er and/or Kelvin-Helmholtz (v||) drive for comparison
5. Study variation of density fluctuations as ∇(ne) varies
6. Increase βe above zero for EM runs
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